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Monolayer cluster growth in far-from-equilibrium systems is investigated by applying simulation and ana-
lytic techniques to minimal hard core particle(exclusion) models. The first model(I), for postdeposition
coarsening dynamics, contains mechanisms of diffusion, attachment, and slow activated detachment(at rate
e!1) of particles on a line. Simulation shows three successive regimes of cluster growth: fast attachment of
isolated particles; detachment allowing furthersetd1/3 coarsening of average cluster size; andt−1/2 approach to
a saturation size varying ase−1/2. Model II generalizes the first one in having an additional mechanism of
particle deposition into cluster gaps, suppressed for the smallest gaps. This model exhibits early rapid filling,
leading to slowing deposition due to the increasing scarcity of deposition sites, and then continued power law
fsetd1/2g cluster size coarsening through the redistribution allowed by slow detachment. The basicsetd1/3

domain growth laws ande−1/2 saturation in model I are explained by a simple scaling picture involving the time
for a particle to detach and diffuse to the next cluster. A second, fuller approach is presented that employs a
mapping of cluster configurations to a column picture and an approximate factorization of the cluster configu-
ration probability within the resulting master equation. This allows, through the steady state solution of the
corresponding equation for a cluster probability generating function, quantitative results for the saturation of
model I in excellent agreement with the simulation results. For model II, it provides a one-variable scaling
function solution for the coarsening probability distribution, and in particular quantitative agreement with the
cluster length scaling and its amplitude.
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I. INTRODUCTION

This paper is concerned with domain growth in far-from-
equilibrium systems. This is a subject of increasing interest
because of both the wide range of behaviors and the large
number of applications, which range from phase separation
in mixtures to island formation and coarsening during depo-
sition of a thin film or submonolayer[1,2], among other
systems.

Our aim is to discuss a series of one-dimensional exclu-
sion models with particle diffusion, reversible or irreversible
attachment to clusters, and deposition mechanisms that rep-
resent, for example, volume reduction effects after cluster
coalescence. Diffusion processes tend to bring these systems
to equilibrium steady states, but pressure and other external
influences may drive the system to new steady states. Al-
though not usually related to a specific real problem, these
one-dimensional models may reveal interesting features that
help to understand more complex and realistic surface and
bulk systems[3,4], with the advantage of being more trac-
table both analytically and numerically. We will discuss a
series of plausible physical situations in systems with diffu-
sion and mechanisms that drive them out of equilibrium, in
order to understand the details of domain growth and con-
vergence to steady states, if it occurs.

In the first model, hereafter called model I, a fixed frac-
tion r of a one-dimensional lattice is randomly filled with

hard core particles. The diffusion rates arer =1 when the
particles are free, i.e., when they have two empty nearest-
neighbor sites, andr =e,e−E/T (whereE is the related energy
barrier) when they have one occupied nearest-neighbor site
[Fig. 1(a)]. For e!1 sT→0d, the average aggregate’s length
grows ast1/3 in a long time range, and eventually approaches
saturation at,e−1/2 with a slow t−1/2 decay(Sec. II). In the
limit e→0, this model is equivalent to the Ising model with
Kawasaki dynamics previously studied by Cornellet al. [5],
who focused on its zero-temperature features. However, the
dynamic rules are mainly motivated by the Clarke-
Vvedensky model for thin films or submonolayer growth[6],
excluding the deposition processes. In the simplest versions
of that model, an isolated adatom has to overcome an energy
barrier Es to diffuse, while when it is attached ton nearest
neighbors the energy barrier increases toEs+nEb, whereEb
is a bonding energy. This model and related ones have al-
ready been intensively studied in two dimensions during the
deposition process[6–8], but a few works have considered
the post-deposition coarsening dynamics[9].
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FIG. 1. (a) Diffusion and detachment processes of model I, with
the corresponding rates.(b) Added deposition processes of model
II, with the corresponding rates. The deposition at sites with two
occupied neighbors(last process) is forbidden.
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Subsequently, we will generalize the previous hard core
dynamical system by introducing deposition of particles(see,
e.g., Refs.[10,11]), but allowing deposition only at(empty)
sites with at least one empty nearest neighbor[Fig. 1(b)]. In
this model(referred to as model II), the domain coalescence,
which generates larger vacancies between aggregates, is fol-
lowed by a density increase. The exclusion of deposition at
single holes between clusters represents the geometrical frus-
tration of real systems. In Sec. III, we will show that this
model exhibits at1/2 domain growth. This is among other
results we have obtained by simulation studies, which are
presented for both models I and II in Secs. II and III, respec-
tively.

Our models share some aspects with diffusion limited
coalescence models[14–16] and with fragmentation-
aggregation models[12,13]. They are similarly described in
terms of cluster or interval probabilities, and like the frag-
mentation models they are amenable to analytic investigation
based on an independent cluster approximation(the indepen-
dent interval approximation to the joint cluster length prob-
ability occurring in the master equation). We use this ap-
proach to explain properties of models I and II, including
distributions of cluster size(Secs. II and III). Further, a
simple scaling picture can be developed in order to describe
the basic domain growth laws; we use this at the beginning
of Sec. II.

II. MODEL I: DIFFUSION, DETACHMENT,
AND REATTACHMENT OF PARTICLES

A. Processes

The model studied in this section has the particle hopping
processes depicted in Fig. 1(a). Isolated particles hop sym-
metrically on a chain at unit rate(“diffusion” ), while a single
particle with a left hand(right hand) neighbor can hop to an
empty right(left) neighbor with ratee (detachment). So clus-
ters evolve by detachment and reattachment of particles. The
model is of exclusion type: no site can accommodate more
than one particle.

This model is clearly particle conserving, so the densityr
is fixed. The casee!1 is of particular interest since, as re-
ported in the simulation studies below and explained in the
following subsection, very large clusters emerge.

B. Simulations

We simulated model I in one-dimensional lattices of
length L=8000. This length is sufficiently large to ensure
that finite size effects are negligible, as shown by compari-
sons of some results with data from lattices withL=16 000
(particularly for the smallest values ofe, this comparison is
essential).

Initially, the lattice is randomly filled with a density of
particlesr. We simulated three values of the densityr=0.1,
r=0.5, andr=0.9, which are representative of the range of
intermediate densities, i.e., densities not too small(r<0) or
too large(r<1). For r=0.1 andr=0.9, we considered sev-
eral values of the diffusion ratee ranging frome=10−1 to

e=10−3, and for r=0.5 we performed simulations untile
=10−5.

The sequence of characteristic behaviors of model I, as
shown by simulation results, are(i) early fast attachment of
isolated particles to each other to form clusters;(ii ) an inter-
mediate regime in which detachment sets in, allowing further
coarsening;(iii ) finally, a diffusive approach to a saturated
state where the clusters have a large steady mean size that
depends one.

The three regimes are well separated at smalle. This is
illustrated in the plot of log10d versus log10t, shown in Fig. 2,
whered is the mean size of clusters of two or more particles;
d is given in terms of the probabilityPtsmd that an arbitrarily
chosen cluster has size(or mass) m at time t by

d =

o
m=2

`

mPtsmd

o
m=2

`

Ptsmd

. s1d

The early time dependence ofd in region (i) (at smalle)
starts with a characteristic increase with rate proportional to
a high power ofe, and then crosses over to a form allowing
data collapse in terms of the reduced time variableet, as
shown in Fig. 3.

In region (ii ), d increases as

d , ta. s2d

The apparent exponentaef f, defined as the local slope of the
log d3 log t plot, was calculated numerically.aef f is shown

FIG. 2. (Color online) Typical time evolution of the average
cluster lengthd in model I, with three different regimes. Data in the
plot were obtained forr=0.5 ande=10−4.

FIG. 3. (Color online) Average cluster length as a function of the
scaling variablelog10setd, for model I with r=0.5 and e=10−3

(squares), e=10−4 (triangles), ande=5310−5 (crosses).
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in Fig. 4 as a function ofsetd−1 for three different values ofe.
It appears to approach the valuea=1/3 in thelimit of small
e and correspondingly larget, which is consistent with the
prediction of a simple scaling description(next subsection).

Figure 5 shows the diffusive approach of the mean cluster
size to its saturation valued`. This approach is well de-
scribed byd=d`−C/ t1/2, for t→`, with C constant. The
dependence one of the saturation valued` is illustrated in
Fig. 6 for r=0.5. The least squares fit in Fig. 6 gives

d` < 0.72e−1/2 + 1.93, s3d

in which the dominant(proportional toe−1/2) and the sub-
dominant(additive constant) terms were estimated. Like Eq.
(2) with a=1/3, this result follows from the analytic work in
Sec. II C.

C. Theory

The characteristic results just described have been inter-
preted by simple heuristic scaling arguments and by detailed
analytic studies starting from the master equation and em-
ploying an independent interval approximation. This second
approach is capable of yielding cluster length distributions
and their evolution.

To begin with, we focus on the asymptotic cluster size at
small e. This asymptotics occurs in the regime where lone
particles are rare, and those that are present are in the process
of reattaching themselves to the clusters they came from or

to a neighboring one. The second case provides the sharing
which sets the mean cluster sized. At densities of orderr
,1/2, the cluster size is roughly of the order of cluster sepa-
ration [see Fig. 7(a)]. Thus the equilibrium of detachment
time s1/ed and time of diffusion to a neighboring cluster
s,d2d gives the observed saturation result

d , e−1/2. s4d

This argument can be generalized rather obviously to explain
the t−1/2 approach to saturation.

A more interesting application is the explanation of the
early cluster size growth law[Eq. (2)]. Here, unlike the satu-
ration just described, the cluster separations are such that the
detached particle is likely to return and reattach many times
before it eventually diffuses to the next cluster[Figs. 7(a)
and 7(b)]. Its likelihood of returning to the origin means that
the detachment ratee needs to be replaced by an effective
rateẽ=ePmig, wherePmig is the(migration) probability that a
freely diffusing particle does not return to the detachment
site before diffusing the distance,d to the next cluster. In
other words[see Fig. 7(b)], this is the probability that a free
particle at positiony=1 does not return to the originsy=0d
before a time of orderd2, which is the typical time for dif-
fusion along a distanced. Considering that

FIG. 4. (Color online) Effective exponentsa, defined as local
slopes of the logd3 log t plots, for model I withr=0.5 ande=5
310−5 (bottom, blue), e=2310−5 (medium, green) and e=10−5

(top, red).

FIG. 5. (Color online) Average cluster size at long timest as a
function of 1/t1/2, for r=0.5 ande=10−3 in model I. The dashed
line is a least squares fit of the data for 106ø tø108.

FIG. 6. (Color online) Saturation value of the average cluster
length as a function ofe−1/2 in model I. The dotted line is a least
squares fit of the data.

FIG. 7. (a) Detachment of a particle(in gray) at the border of a
cluster, with ratee. In model I, the mean cluster length isd and the
typical cluster separation is, asymptotically, also of orderd for den-
sities not too small nor too large.(b) A free particle(in gray) im-
mediately after its detachment from the right cluster.
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Qsy,td =
y

s4pDd1/2t−3/2expS−
y2

4Dt
D s5d

is the probability that the first passage of a random walker at
point y occurs at timet [17] (D is the diffusion coefficient),
Pmig is given by

Pmig , E
d2

`

Qs1,tddt , d−1. s6d

In terms of the effective rateẽ, the required time for a
particle to transfer to the next cluster is of order 1/ẽ. Thus,
the time required for doubling the sized of a cluster by
successive gain and loss of particles isd2/ ẽ,d3/e. So the
cluster growth proceeds according to

d

dt
d ,

d

sd3/ed
, s7d

and hence

d , setd1/3. s8d

This explains the behavior seen in the simulations(Figs. 3
and 4). The situation is analogous to domain scaling in Ising
chains where, with Kawasaki dynamics[5], spins split off
from domain edges and migrate across to increase the do-
main size by one lattice unit.

We turn next to the more powerful analysis starting from
a version of the master equation, which can provide a full
description of the process. This is more easily set up by
reformulating the process using a column picture, in which a
column of heightm represents a cluster of sizem, and then
the original detachment and diffusion processes correspond
to those shown in Fig. 8. Since one cluster has two edges but
corresponds to a single column, the one-particle detachment
rate in the column picture is

g = 2e. s9d

We denote byPtsmd the probability that a randomly cho-
sen cluster(equivalently, column) has sizem at time t. Then
the gain(loss) from in (out) processes provides the following
master equation, in an independent interval approximation in
which joint probabilities are factorized:

Pt+1smd − Ptsmd = Am

; Ptsm− 1dusm− 1dFg o
m8ù2

Ptsm8d

+ 1Ptsm8 = 1dG + Ptsm+ 1d

3fgusm+ 1 − 2d + 1dm,0g

− PtsmdFgusm− 2d + 1dm,1 + g

3 o
m8ù2

Ptsm8d + 1Ptsm8 = 1dG . s10d

The corresponding equation for the generating function

Gtssd ; o
m=0

Ptsmdsm s11d

is

Gt+1ssd = GtssdF1 + sastd +
g

s
− g − astdG + ssg − 1dPts1d

+ fgPts0d + s1 − gdPts1dg −
g

s
Pts0d, s12d

where astd=gf1−Pts0dg+s1−gdPts1d. It is easy to check
probability and mass conservation usingGts0d andGt8s0d.

The steady state distributionPsmd and generating func-
tion Gssd resulting from Eq.(12) are given by

Gssd = sg − sad−1fgPs0d − ss1 − gdPs1dg, s13d

Psmd = SA

g
Dm−1

Ps1d, m. 1, s14d

and

Ps1d = APs0d, s15d

with A=gf1−Ps0dgf1−s1−gdPs0dg−1. So the steady state
cluster size distribution is exponential. The mean size of
multiparticle clusters[Eq. (1)] and the mean masskml
;om=0

` mPsmd are then obtainable in terms ofPs0d, as is the
densityr. So, in particular, the mean cluster lengthd;kml
can be found in terms ofr. The result simplifies at smallg
(small e) to

d = g−1/2F r

s1 − rdG1/2

+
fr/s1 − rd + 3g

2

= e−1/2F r

2s1 − rdG1/2

+
fr/s1 − rd + 3g

2
, s16d

where the dominant and the first subdominant terms are
shown. This form is consistent with the scaling result(4) and

FIG. 8. (a) Example of particle-hole configuration on a line and
the map(dashed arrows) into a column problem.(b) The processes
of particle detachment from clusters, with rateg, and of free par-
ticles diffusion, with rate 1, in the corresponding column picture.
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is in very good agreement with the simulation result(3),
including the subdominant constant term: Eq.(16) gives d
=0.7071. . .e−1/2+2 for r=0.5 (see also Fig. 6). In the same
limit, this is also, apart from a numerical factor, the charac-
teristic size in the exponential cluster mass distribution.

III. MODEL II: DIFFUSION AND DEPOSITION
OF PARTICLES

A. Processes

Model II is a generalization of model I, different only by
having the deposition processes depicted in Fig. 1(b), in ad-
dition to the diffusion and detachment processes of Fig. 1(a).
This makes the model non-particle-conserving, which leads
to continued coarsening and other scaling properties and
crossover.

B. Simulations

The characteristic behavior of model II, as exhibited by
simulation results, is as follows. For initial densities not too
nearr=1, there is(i) an early regime of rapid filling, due to
deposition, and cluster evolution due to both processes;(ii )
an intermediate regime where deposition slows because of
the scarcity of deposition sites due to the increased density—
the exclusion constraint of course applies. The slow detach-
ment process allows redistribution of particles, opening up
new deposition sites and allowing a continually slowing
coarsening(with no saturation asr&lt;1 ).

Figure 9 shows simulation results for the evolution of the
mean cluster sized. That plot shows thatdstd is well fitted by
the form

dstd = Bt1/2s1 + Ct−1/2 + ¯d. s17d

In Fig. 10 we show the ratio between the estimates of the
amplitudeB and e1/2 for several values ofe. Those results
give

Bsed , be1/2, s18d

with negligible corrections to scaling, whereb
=0.252±0.002. This result is in accord with theoretical

analysis given in the next subsection, including the estimate
of the amplitudeb.

The dependence of the evolving density on timet and rate
e has also been studied. The simulation results shown in Fig.
11 imply that the density is a function of the scaling variable
setd1/2 and, at very long times, it converges to 1 as

1 − r , setd−1/2. s19d

This form is also in agreement with the theoretical analysis
below.

C. Theory

The characteristics presented in the foregoing subsection
can be interpreted using an analytic investigation along the
lines of the detailed discussion given in Sec. II C.

We have to include the effects of the extra deposition
process, which leads to a decrease of the total number of
clusters and of the number of holes between the clusters as
time increases. On the other hand, the lengthL of the line in
which particles are deposited and diffuse is kept constant.
Consequently, in order to adopt the column picture of Sec.
II C (see Fig. 8), it is necessary to consider that the lengthL0
of the corresponding column problem decreases in time
(these lengths are related asL0=L−M, whereM is the total
mass or total number of particles, for periodic boundary con-
ditions).

The evolution equation here is written for cluster numbers
as

FIG. 9. (Color online) Long time scaling of the mean cluster
length kdl in model II.

FIG. 10. (Color online) Ratio between the estimated amplitude
B of the scaling of average cluster length[Eq. (17)] ande1/2, as a
function of log10s1/ed, in model II.

FIG. 11. (Color online) Scaling plot of the particle densityr in
model II, for e=10−2 (squares), e=5310−3 (triangles), and e
=10−3 (crosses).
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Nsm,t + 1d − Nsm,td = L0sAm + Bmd, s20d

where the diffusion contributionAm is given in Eq.(10) and
the deposition contribution is

Bm = Pts0df2usm− 2dPtsm− 1d − 2usm− 1dPtsmd + dm,1Pts0d

− 2dm,0g. s21d

The length of the lattice in which the column problem is
defined varies due to deposition as

L0st + 1d − L0std
L0std

= − Pts0df2 − Pts0dg. s22d

In these equations, the cluster probability is

Ptsmd =
Nsm,td
L0std

. s23d

They preserve conservation of probability, but mass is no
longer conserved.

The resulting equation is similar to ones occurring in coa-
lescence models[14–16]. From this we expect that the large
time and smalle limit discussed subsequently is equivalent
to the model in Ref.[14]. Our approach, which exploits the
generating function method, becomes equivalent, in the scal-
ing limit, although in a conjugate space, to continuum ap-
proximations used in the coalescence studies of Refs.
[14,16].

Now the generating function[Eq. (11)] satisfies

Gt+1ssdf1 − Pts0dg2 − Gtssd

= ss− 1dFGtssdSastd −
g

s
D + sg − 1dPts1d +

g

s
Pts0dG

+ Pts0df2ss− 1dGtssd − sPts0d + 2sPts0d − 1dg. s24d

In the right hand site of Eq.(24), the first term corresponds
to diffusion processes and the second one to deposition pro-
cesses.

Because deposition slowly fills the system, we expect the
configurations to coarsen and presumably to go into some
scaling asymptotics where mass scales with some power oft,
andPtsmd, andGtssd each become one-variable scaling func-
tions. So we look for a long time scaling solution of the
above equation.

At long times, the finite differenceGt+1ssd−Gtssd in Eq.
(24) can be taken as a derivative. The scaling variable will be
some combination oft (large) andu;1−s (small), the latter
because large cluster sizes arise from structure inGtssd at s
<1. The variableu is actually conjugate tom (see below).
Coarsening will correspond to the scale ofm astz, with some
powerz, in which case the one-variable form will be

Gtssd = uafsutzd, s25d

with some function f. Normalization requiresa=0 and
fs0d=1. In the scaling limit, the relationship of the generat-
ing function to the probabilityPtsmd requires the latter to be
of the form

Ptsmd =
1

tz
gSm

tz
D , s26d

with

fsxd =E
0

`

gsyde−xydy. s27d

It turns out that the consistent scaling solution hasgs0d=0,
so the 1/tz contribution toPts0d vanishes, leaving a leading
term of lower-than-scaling order,

Pts0d =
c/2

t2z , s28d

wherec is a constant. Equation(24) leads to the dynamical
exponent

z= 1/2 s29d

and to the following equation for the one-variable scaling
function:

xf8sxd − 2cfsxd − 2gx2fsxd + 2c = 0. s30d

Even without solving Eq.(30) we can infer that

Pts0d =
c/2

t
, s31d

kmlt , g1/2t1/2 , e1/2t1/2, s32d

and

1 − rt , g−1/2t−1/2 , e−1/2t−1/2. s33d

These hold in the long time scaling limit we have introduced
and agree with the observed simulation results in Eqs.
(17)–(19).

Equation(30) can be formally solved for the scaling func-
tion fsxd by using the variablez=x2 and considering the
function fsxdx−2c. The result is

fsxd =
c

g
E

0

` S1 +
v
g
D−c−1

e−vx2
dv. s34d

The largex expansion offsxd and Eq.(27) provides the small
y expansion ofgsyd:

gsyd =
1

g1/2GS y

g1/2D , s35d

where

Gsud = o
m=0

`
csc + 1d ¯ sc + md

s2m+ 1d!
s− 1dmu2m+1. s36d

This confirms thatgs0d=0. The cluster distribution has the
following form, in terms of the odd functionG:

Ptsmd =
1

m*std
GS m

m*std
D , s37d

where m* =sgtd1/2,setd1/2. It explains the scaling variable
setd1/2 used to collapse the simulation data in Fig. 11.
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The conditions thatG must be non-negative and normal-
izable are satisfied withc=1/2 in Eq.(28), which leads to

Gsud =
u

2
e−su/2d2. s38d

The mean cluster mass(cluster length in the original prob-
lem) is easily obtained as

kmlt < Îpsgtd1/2. s39d

Considering relation(9), the amplitude of cluster length scal-
ing is B=Î2pe1/2<2.507e1/2. It quantitatively agrees with
the result obtained in simulations(Sec. III B).

IV. CONCLUSION

We studied two one-dimensional exclusion models with
particle diffusion, reversible or irreversible attachment to
clusters, and deposition mechanisms.

In model I, starting from a randomly filled lattice, only
particle diffusion is allowed, with small detachment ratese
for particles at the edges of the clusters. Simulation results
show an initial regime with formation of small clusters, a
regime of cluster size growth asd, t1/3, and a regime of
cluster size saturation atd,e−1/2. These results can be ex-
plained using heuristic scaling arguments. The analytical
treatment of the master equation with an independent cluster
approximation for joint probability distributions predicts a

saturation cluster size in quantitative agreement with numeri-
cal data.

Model II generalizes model I in having also particle depo-
sition: this is allowed only at empty sites with one or two
empty nearest neighbors. Simulation results show continuous
coarsening with at1/2 increase of the average cluster size and
an increase of the density witht−1/2 corrections. These scal-
ing forms are justified by analytical investigations, again us-
ing an independent cluster approximation, which provides
good quantitative agreement with the simulations.

We expect that the models presented above and the com-
bination of different methods to explain their scaling behav-
iors can be used to understand further nonequilibrium sys-
tems. Of particular interest would be the extension of
theoretical methods(e.g., scaling approaches) to two-
dimensional systems such as adatom islands on surfaces, or
the extension of the one-dimensional models to include other
mechanisms that drive the systems to new nonequilibrium
steady states or that lead to anomalous coarsening.
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